Usage of in-memory columnbased SAP HANA databases in enterprise information systems

PUBLIC

Radim Benek, SAP October, 2018

SAP Labs Czech Republic in Brno

SAP ČR in Brno from 1995, SAP Labs from 2016

S/4 HANA and Cloud development

delivers innovative crossplatform web applications that are based on modern design principles and technologies.

Globalization Services

focus on developing country specific functions for SAP financial solutions

Application Innovation Services

supports all companies running SAP solutions with a strong focus on continuous innovation

Agenda

In-memory column store database

Examples

Additional features

SAP HANA Platform

In-memory column store database

Changes in Hardware

Performance bottleneck

What is SAP HANA?

An Appliance of Hard- and Software

Dictionary Encoding

Example

- 8 billion humans
- Each attribute is dictionary encoded

recID	fname	Iname	gender	city	country	birthday
••••						
39	John	Smith	m	Chicago	USA	12.03.1964
40	Mary	Brown	f	London	UK	12.05.1964
41	Jane	Doe	f	Palo Alto	USA	23.04.1976
42	John	Doe	m	Palo Alto	USA	17.06.1952
43	Peter	Schmidt	m	Potsdam	GER	11.11.1975

Dictionary Encoding

Dictionary Encoding a Column

- A column is split into a dictionary and an attribute vector
- Dictionary stores all distinct values with implicit valueID
- Attribute vector stores valueIDs for all entries in the column
- Position is stored implicitly
- Enables offsetting with bit-encoded fixed-length data types

recID	fname	Dictionary for "fname"			Attribute Ve	ctor for "fname"
			valueID	Value	position	valueID
39	John		•••			
40	Mary		23	John	39	23
41	Jane		24	Mary	40	24
42	John		25	Jane	41	25
43	Peter		26	Peter	42	23
					43	26

Dictionary Encoding

Data Size Examples

Column	Cardi- nality	Bits Needed	Item Size	Plain Size	Size with Dictionary (Dictionary + Column)	Compression Factor
First names	5 millions	23 bit	50 Byte	400GB	250MB + 23GB	≈ 17
Last names	8 millions	23 bit	50 Byte	400GB	400MB + 23GB	≈17
Gender	2	1 bit	1 Byte	8GB	2b + 1GB	≈8
City	1 million	20 bit	50 Byte	400GB	50MB + 20GB	≈ 20
Country	200	8 bit	47 Byte	376GB	9.4kB + 8GB	≈47
Birthday	40000	16 bit	2 Byte	16GB	80kB + 16GB	≈1
Totals			200 Byte	≈ 1.6TB	≈ 92GB	≈ 17

Compression

Compression Techniques

- For attribute vector
 - -Prefix encoding
 - -Run length encoding
 - -Cluster encoding
 - -Sparse encoding
 - -Indirect encoding
 - Sequence is partitioned into N blocks of size S (typically 1024)
 - If a block contains only a few distinct values an additional dictionary is used to encode the values in that block
 - Additionally: links to the new dictionaries + blocks that have a dictionary

Compression Indirect Encoding

Example: fname column, table sorted by country

Direct access!

Tuple Reconstruction

Row store

- All attributes are stored consecutively
- 200 byte → 4 cache
 accesses à 64 byte
 → 256 byte
- Read with 4MB/ms/core
- → ≈ 0.064 µs
 with 1 core

Tuple Reconstruction Column Store

- 1 cache access for each attribute
- 6 cache accesses à 64 byte

→ 384 byte

- Read with 4MB/ms/core
- → ≈ 0.096 µs
 with 1 core

Data loaded but not used

Scan Performance

Row Store – Full Table Scan

- Table size 8 billion tuples × 200 bytes per
- Scan through all rows with 4 MB/ms/core \rightarrow 400 s with 1 core

Scan Performance

Row Store – Stride Access "Gender"

Scan Performance

Column Store – Full Column Scan "Gender"

Database Operations INSERT – example (With New Dictionary Entry)

INSERT INTO world_population **VALUES** (Karen, Schulze, f, GER, Rostock, 06-20-2014)

0

1

2

3

4

D (new)						
0	Anton					
1	Hanna					
2	Karen					
3	Martin					
4	Michael					
5	Sophie					

fname	Iname	gender	country	city	birthday
Martin	Albrecht	m	GER	Berlin	08-05-1955
Michael	Berg	m	GER	Berlin	03-05-1970
Hanna	Schulze	f	GER	Hamburg	04-04-1968
Anton	Meyer	m	AUT	Innsbruck	10-20-1992
Sophie	Schulze	f	GER	Potsdam	09-03-1977
	Schulze			Rostock	

- 1. Look-up on dictionary \rightarrow no entry found
- 2. Append new value to dictionary
- 3. Sort Dictionary
- 4. Change valueIDs in attribute vector
- 5. Append new valueID to attribute vector

- AV Attribute Vector
- D Dictionary

Database Operations DELETE - example

DELETE FROM world_population **WHERE** fname = "Jane" and Iname = "Doe"

Dictionar	y "fname"	A	ttribute \	/ector "fname"
valueID value			recID	valueID
22	Andrew		38	22
23	Jane		39	24
24	John		40	25
25	Mary		41	23
26	Peter	· · · ·	42	24
			43	26

unbute v	ector mame
recID	valueID
38	22
39	24
40	25
41	23
42	24
43	26

Dictionar	y "Iname"	A	ttribute Ve	ector "Iname"
valueID value			recID	valueID
17	Brown		38	19
18	Doe		39	21
19	Miller		40	17
20	Schmidt		41	18
21	Smith		42	18
			43	20

recID	valueID
38	19
39	21
40	17
41	18
42	18
43	20

Database Operations UPDATE

UPDATE world_population **SET** city = "Bamberg" **WHERE** fname = "Hanna" **AND** Iname = "Schulze"

recID	fname	Iname	gender	country	city	birthday
0	Martin	Albrecht	m	GER	Berlin	08-05-1955
1	Michael	Berg	m	GER	Potsdam	03-05-1970
2	Hanna	Schulze	f	GER	Hamburg	04-04-1968
3	Anton	Meyer	m	AUT	Innsbruck	10-20-1992
4	Ulrike	Schulze	f	GER	Potsdam	09-03-1977
5	Sophie	Schulze	f	GER	Rostock	06-20-2012
8×10 ⁹	Zacharias	Perdopolus	m	GRE	Athen	03-12-1979

Combination of DELETE and INSERT operation

- 1. Look-up "Bamberg" in dictionary \rightarrow entry not found
- 2. Append new value "Bamberg" to dictionary
- 3. Reorganize dictionary
- 4. Replace old values with new values in attribute vector (expensive)

Examples

Performance measurement

Examples

System QM0 – 48 TB / 1100 CPUs

Table	Store	Rows	Size	Time
ACDOCA_C	Column	110 million	5 GB	1,8 s
ACDOCA_R	Row	110 million	240 GB	22,5 s
ACDOCA_sm	Column	5 million	140 MB	0,3 s
ACDOCA	Column	19,5 billion	1,3 TB	139 s
CDHR	Column	31 million	1,3 GB	12,4 s
CDPOS	Column	730 million	44 GB	

System HANA Express edition (VM) – 16 GB / 4 CPUs

Table	Store	Rows	Size	Time
ACDOCA_sm	Column	5 million	140 MB	0,9 s

Application improvements

CO-PA Accelerator: Result provided by a Customer

- COPA Accelerator implemented within 8 weeks (including test & production landscape).
- No manual modeling or creation of analytical views in HANA needed.
- Only replication of transactional CO-PA data needed.
- Some figures about data volume:
 - -Total records in HANA: 550 Mil
 - -Total volume in HANA: 30 GB
 - -Total volume in ERP DB2:
 - 580 GB uncompressed,
 - 140 GB compressed (on disk)
- Number of posted records/day: -100.000 - 200.000
- Initial replication took ~24 hours

Application improvements

CO-PA Accelerator: Top Down Accelerating Period-End Closing

Application improvements

CO-PA Accelerator: KE28 – Validation with Productive Customer-Data

CO-PA Data • ~ 350 Mil Line Items • ~ 80 Mil CE4-Items	KE28 w/o SAP HANA	HANA- optimized KE28	Acceleration in Factors	Acceleration in %
Top-Down-Distribution Level 1 6 Variants with Postings 	5.880 sec	184 sec	32	97 %
 10 Variants without Postings 	7.550 sec	194 sec	39	97 %
Top-Down-Distribution Level 2 13 Variants with Postings 	25.096 sec	13.282 sec	2	50 %
 181 Varianten without Postings 	64.557 sec	1.782 sec	36	97 %
Total Runtime	28,6 h	4,3 h	7	86 %

 Existing KE28 Variants will be accelerated with no changes to customizing or jobscheduling up to factor 40

Significant unload of primary DB during period-end closing activities

Additional features

Backup/Recovery

SAP HANA holds the bulk of its data in memory for maximum performance, but still uses persistent storage to provide a fallback in case of failure.

- During normal operation, data is automatically saved from memory to disk at regular savepoints. Additionally, all data changes are captured in redo log entries. A redo log entry is written to disk after each committed database transaction.
- Support for multitenant database containers
- Apply to all of SAP HANA, both the hot and the warm store
- Backint enables 3rd party tool vendors to directly connect backup agents

Multitenant and scale

Multitenant Data Base

- A single SAP HANA can contain several isolated databases
- The tenant databases share computing resources (RAM, CPU), SW installation, system administration (start/stop system).
- The tenant database has their own metadata, data, and users.

Scale the system

- More data -> more RAM -> more CPUs
- Scale up: one system up 20 CPU and 20 TB RAM.
- Scale out: combining multiple independent nodes into one system (supporting multitenant).

Dynamic Tiering Data temperatures

Data tiering is the assignment of data to various tiers/storage media based upon data type, performance requirements, frequency of access.

SAP HANA Platform

SAP HANA: The business data platform for the intelligent enterprise

Graph Definition

• The property graph model provides directed, attributed multi-relation graphs

- Use cases
 - Social network, company/organizations, production and supply chains, citation networks, authorization and role concepts, knowledge graphs...
- SAP HANA supports data graph processing directly in the server.
- Built-in functions like shortest path, get neighborhood, topological analysis of complete graph
- Support for pattern matching using openCypher
- GraphScript to develop custom graph algorithms

Graph Code example

A GRAPH WORKSPACE exposes the data to the graph engine	CREATE GRAPH WORKSPACE [SCHEMA].[NAME] EDGE TABLE [SCHEMA].[EDGE TABLE/VIEW] SOURCE COLUMN source TARGET COLUMN target KEY COLUMN id VERTEX TABLE [SCHEMA].[NODE TABLE/VIEW]					
	KEY COLUMN id;					
ID TYPE	NAME	YEAR	ID	SOURCE	TARGET	TYPE
AUT-6841 Author	Richardson, Fred		1	H94-1009	AUT-6841	isAuthoredBy
H94-1009 Paper	The Hub and Spoke Paradigm for CSR Evaluation	1994	2	AUT-6841	ORG-523	isAffiliatedTo
ORG-523 Organizat	on Boston University		3	H94-1009	H92-1076	citation
H92-1076 Paper	Spontaneous Speech Collection for the CSR Corpus	1992				
 MATCH (A) WHERE A.N AND P1.TY AND e2.TY RETURN P2 	[e1]->(P1), (P1) -[e2] AME = 'Fred' PE = 'Paper' PE = 'citation' .TITLE AS TITLE	->(P2)			Fred	Paper

Graph Customer example

Customer collects and analyze data about companies, people and their connections.

Graph size

- 24 Mio Nodes (organizations, persons)
- 125 Mio. Edges (owns, knows, etc.)
- UBO (ultimate beneficial owner) description
- All persons owning 25% or more of a company are UBO
- All persons "controlling" a company which owns 25% or more are UBO

UBO implementation with HANA Graph

~15 lines of code

• 5 minutes to identify all UBOs for millions of companies

Spatial data

Types and functions

SAP HANA provides native spatial data processing

- Natively store 2D, 3D and 4D vector data types (x, y, z, m)
- Over 80 native SQL based geospatial functions
- Open standards (OGC, 1999 SQL/MM)

Spatial data Code example

 CREATE COLUMN TABLE shapes (id BIGINT, description NVARCHAR(IOO), shape ST_GEOMETRY(4326));

INSERT INTO shapes VALUES (1, 'a', new ST_Point('POINT(1.6, 2.0)', 4326));
INSERT INTO shapes VALUES (3, 'c', new ST_Polygon('Polygon((0 0, 1 0, 1 1, 0 1, 0 0))', 4326));

Spatial data Customer example

 Airlines need real-time insights into flight operations of several thousand flights per day and be situational-aware of meteorological conditions which can result in cancellations or delay of flights. Airlines need the ability to manage airline traffic in real-time with a global view and provide decision-support to flight dispatchers and pilots to find alternative trajectories while minimizing costs

SAP HANA, express edition

SAP HANA, express edition is a database and application development platform. You can run it for free (up to 32GB of RAM) on your laptop and start building new apps.

Resources

Resources

- Plattner, Hasso. "In-Memory Data Management 2015" OpenHPI. Hasso-Plattner-Institute, 07 Sept. 2015. Web. 13 July 2017. https://open.hpi.de/courses/imdb2015
- Fath, Markus. "Spatial Analysis with SAP HANA Platform" openSAP, 25 April 2017. Web. 03 October 2018. <u>https://open.sap.com/courses/hsgs1</u>
- Fath, Markus. "Analyzing Connected Data with SAP HANA Graph" openSAP, 20 June 2018. Web. 03 October 2018. <u>https://open.sap.com/courses/hsgra1</u>
- SAP HANA Academy Videos: <u>https://www.youtube.com/user/saphanaacademy</u>
- SAP Help Portal SAP HANA Platform: <u>https://help.sap.com/viewer/product/SAP_HANA_PLATFORM/</u>
- SAP HANA, express edition:

https://www.sap.com/developer/topics/sap-hana-express.html

Thank you.

Contact information:

Radim Benek Development Expert, SAP Labs Czech Republic SAP CR, spol. s r.o. Holandská 6/8 639 00 Brno radim.benek@sap.com

www.sap.com/contactsap

© 2018 SAP SE or an SAP affiliate company. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or for any purpose without the express permission of SAP SE or an SAP affiliate company.

The information contained herein may be changed without prior notice. Some software products marketed by SAP SE and its distributors contain proprietary software components of other software vendors. National product specifications may vary.

These materials are provided by SAP SE or an SAP affiliate company for informational purposes only, without representation or warranty of any kind, and SAP or its affiliated companies shall not be liable for errors or omissions with respect to the materials. The only warranties for SAP or SAP affiliate company products and services are those that are set forth in the express warranty statements accompanying such products and services, if any. Nothing herein should be construed as constituting an additional warranty.

In particular, SAP SE or its affiliated companies have no obligation to pursue any course of business outlined in this document or any related presentation, or to develop or release any functionality mentioned therein. This document, or any related presentation, and SAP SE's or its affiliated companies' strategy and possible future developments, products, and/or platforms, directions, and functionality are all subject to change and may be changed by SAP SE or its affiliated companies at any time for any reason without notice. The information in this document is not a commitment, promise, or legal obligation to deliver any material, code, or functionality. All forward-looking statements are subject to various risks and uncertainties that could cause actual results to differ materially from expectations. Readers are cautioned not to place undue reliance on these forward-looking statements, and they should not be relied upon in making purchasing decisions.

SAP and other SAP products and services mentioned herein as well as their respective logos are trademarks or registered trademarks of SAP SE (or an SAP affiliate company) in Germany and other countries. All other product and service names mentioned are the trademarks of their respective companies.

See https://www.sap.com/copyright for additional trademark information and notices.